3.5.9 \(\int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx\) [409]

3.5.9.1 Optimal result
3.5.9.2 Mathematica [A] (verified)
3.5.9.3 Rubi [A] (verified)
3.5.9.4 Maple [B] (verified)
3.5.9.5 Fricas [A] (verification not implemented)
3.5.9.6 Sympy [F]
3.5.9.7 Maxima [B] (verification not implemented)
3.5.9.8 Giac [F]
3.5.9.9 Mupad [F(-1)]

3.5.9.1 Optimal result

Integrand size = 25, antiderivative size = 95 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\frac {3 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {a^2 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \]

output
3*a^(3/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1 
/2)*sec(d*x+c)^(1/2)/d+a^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^ 
(1/2)
 
3.5.9.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.97 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=-\frac {a^2 \left (-\sqrt {1-\sec (c+d x)}+\frac {3 \arcsin \left (\sqrt {\sec (c+d x)}\right )}{\sqrt {\sec (c+d x)}}\right ) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(a + a*Sec[c + d*x])^(3/2)/Sqrt[Cos[c + d*x]],x]
 
output
-((a^2*(-Sqrt[1 - Sec[c + d*x]] + (3*ArcSin[Sqrt[Sec[c + d*x]]])/Sqrt[Sec[ 
c + d*x]])*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*Sqrt[1 - Sec[c + d*x]]*Sqrt 
[a*(1 + Sec[c + d*x])]))
 
3.5.9.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4752, 3042, 4301, 27, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{3/2}}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^{3/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}dx\)

\(\Big \downarrow \) 4301

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (a \int \frac {3}{2} \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3}{2} a \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3}{2} a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {3 a \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {3 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

input
Int[(a + a*Sec[c + d*x])^(3/2)/Sqrt[Cos[c + d*x]],x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((3*a^(3/2)*ArcSinh[(Sqrt[a]*Tan[c + 
 d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a^2*Sec[c + d*x]^(3/2)*Sin[c + d*x] 
)/(d*Sqrt[a + a*Sec[c + d*x]]))
 

3.5.9.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4301
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-b^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 
2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[b/(m + n - 1)   Int[(a + 
 b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n 
 - 4)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^ 
2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.5.9.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(173\) vs. \(2(81)=162\).

Time = 2.21 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.83

method result size
default \(\frac {a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-3 \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+2 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right )}{2 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\cos \left (d x +c \right )}}\) \(174\)

input
int((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/d*a*(a*(1+sec(d*x+c)))^(1/2)*(3*cos(d*x+c)*arctan(1/2*(cos(d*x+c)-sin( 
d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-3*cos(d*x+c)*arctan(1/ 
2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+2*si 
n(d*x+c)*(-1/(cos(d*x+c)+1))^(1/2))/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/ 
2)/cos(d*x+c)^(1/2)
 
3.5.9.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 337, normalized size of antiderivative = 3.55 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\left [\frac {4 \, a \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{4 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {2 \, a \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{2 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")
 
output
[1/4*(4*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d 
*x + c) + 3*(a*cos(d*x + c)^2 + a*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c 
)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2) 
*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c) 
^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), 1/2*(2*a*sqrt( 
(a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3*(a* 
cos(d*x + c)^2 + a*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d* 
x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^ 
2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 
3.5.9.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

input
integrate((a+a*sec(d*x+c))**(3/2)/cos(d*x+c)**(1/2),x)
 
output
Integral((a*(sec(c + d*x) + 1))**(3/2)/sqrt(cos(c + d*x)), x)
 
3.5.9.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1143 vs. \(2 (81) = 162\).

Time = 0.40 (sec) , antiderivative size = 1143, normalized size of antiderivative = 12.03 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")
 
output
1/4*(3*(a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt 
(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*c 
os(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 
 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + a*log(2*cos(1/2*d*x + 1/2* 
c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt( 
2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2* 
d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 
1/2*c) + 2))*cos(2*d*x + 2*c)^2 + 3*(a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*si 
n(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2* 
d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c 
)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) 
 + a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*c 
os(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/ 
2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2* 
c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a 
*sin(3/2*d*x + 3/2*c) - 4*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 2*(2*sqrt(2)*a* 
sin(3/2*d*x + 3/2*c) - 2*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 3*a*log(2*cos(1/ 
2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2* 
c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^ 
2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(...
 
3.5.9.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.5.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

input
int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(1/2),x)
 
output
int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(1/2), x)